

Date:- 4th March 2015

Data Sheet Issue:- 2

Rectifier Diode Types W2115MC500 to W2115MC600

Development part number Wx254MC500-600

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{RRM}	Repetitive peak reverse voltage, (note 1)	5000-6000	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	5100-6100	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
$I_{F(AV)M}$	Maximum average forward current, T _{sink} =55°C, (note 2)	2122	Α
$I_{F(AV)M}$	Maximum average forward current. T _{sink} =100°C, (note 2)	1427	Α
$I_{F(AV)M}$	Maximum average forward current. T _{sink} =100°C, (note 3)	866	Α
I _{F(RMS)M}	Nominal RMS forward current, T _{sink} =25°C, (note 2)	2486	Α
I _{F(d.c.)}	D.C. forward current, T _{sink} =25°C, (note 4)	3553	Α
I _{FSM}	Peak non-repetitive surge t _p =10ms, V _m =60%V _{RRM} , (note 5)	19000	А
I _{FSM2}	Peak non-repetitive surge t _p =10ms, V _m ≤10V, (note 5)	21000	Α
l ² t	I^2 t capacity for fusing t_p =10ms, V_{rm} =60% V_{RRM} , (note 5)	1.81×10 ⁶	A ² s
l ² t	l²t capacity for fusing t _p =10ms, V _{rm} ≤10V, (note 5)	2.21×10 ⁶	A ² s
T _{j op}	Operating temperature range	-40 to +150	°C
T_{stg}	Storage temperature range	-55 to +150	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_i below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Cathode side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 150°C T_i initial.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V_{FM}	Maximum peak forward voltage	-	-	2.10	I _{FM} =2500A	V
V_{FM}	Maximum peak forward voltage	-	-	2.80	I _{FM} =4200A	V
V_{T0}	Threshold voltage	-	-	1.074		V
r _T	Slope resistance	-	-	0.405		mΩ
I _{RRM}	Peak reverse current	-	-	100	Rated V _{RRM}	mA
Q_{rr}	Recovered charge	-	6100	7000		μC
Q_{ra}	Recovered charge, 50% Chord	-	2800	-	 I _{TM} =1000A, t _p =1000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	-	160	-	V _r =100V	Α
t _{rr}	Reverse recovery time, 50% chord	-	35	-		μs
		-	-	0.0140	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.0265	Anode side cooled	K/W
		-	-	0.0297	Cathode side cooled	K/W
F	Mounting force	25	-	31	Note 2	kN
W_t	Weight		530			g

Notes:-

- Unless otherwise indicated T_j=150°C.
 For other clamp forces, please consult factory.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	V _{RSM} V	V _R DC V
5000	5000	5100	3350
5200	5200	5300	3500
6000	6000	6100	4020

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Snubber Components

When selecting snubber components, care must be taken not to use excessively large values of snubber capacitor or excessively small values of snubber resistor. Such excessive component values may lead to device damage due to the large resultant values of snubber discharge current. If required, please consult the factory for assistance.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$I_{AV} = \frac{-V_{T0} + \sqrt{{V_{T0}}^2 + 4 \cdot ff^2 \cdot r_T \cdot W_{AV}}}{2 \cdot ff^2 \cdot r_T} \qquad \qquad W_{AV} = \frac{\Delta T}{R_{th}}$$
 and:
$$\Delta T = T_{j \max} - T_K$$

Where V_{T0} =1.074 V, r_T =0.405 m Ω ,

 $R_{\it th}$ = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance					
Conduction Angle 6 phase (60°) 3 phase (120°) ½ wave (180°)				d.c.	
Square wave Double Side Cooled	0.01665	0.01581	0.01516	0.0140	
Square wave Cathode Side Cooled	0.03217	0.03147	0.03090	0.0297	
Sine wave Double Side Cooled	0.01612	0.01531	0.01436		
Sine wave Cathode Side Cooled	0.03174	0.03105	0.03022		

Form Factors					
Conduction Angle 6 phase (60°) 3 phase (120°) ½ wave (180°) d.c.					
Square wave	2.449	1.732	1.414	1	
Sine wave	2.778	1.879	1.57		

5.2 Calculating V_F using ABCD Coefficients

The on-state characteristic I_F vs. V_F, on page 6 is represented in two ways;

- (i) the well established V_{T0} and r_T tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot \ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

25°C Coefficients		150°C Coefficients	
Α	0.6630673	Α	0.3559867
В	0.03002104	В	0.0594599
С	1.923101×10 ⁻⁴	С	3.093674×10 ⁻⁴
D	8.121445×10 ⁻³	D	1.010755×10 ⁻²

5.3 D.C. Thermal Impedance Calculation

$$r_{t} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

 r_{\downarrow} = Thermal resistance at time t.

 $\begin{array}{ll} r_p = & \text{Amplitude of } p_{th} \text{ term.} \\ \tau_p = & \text{Time Constant of } r_{th} \text{ term.} \end{array}$

The coefficients for this device are shown in the tables below:

D.C. Double Side Cooled					
Term	1 2 3 4				
r_{p}	8.594785×10 ⁻³	3.308247×10 ⁻³	1.039072×10 ⁻³	7.916582×10 ⁻⁴	
$ au_p$	0.7185764	0.09970181	0.02165834	5.266433×10 ⁻³	

Term	1	2	3
r_p	0.02196926	5.845724×10 ⁻³	1.904897×10 ⁻³
$ au_p$	4.127141	0.1629998	8.832583×10 ⁻³

6.0 Reverse recovery ratings

(i) Q_{ra} is based on 50% I_{rm} chord as shown in Fig. 1

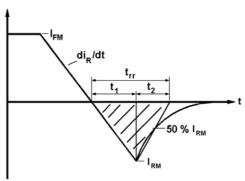


Fig. 1

(ii) Q_{rr} is based on a 150 μ s integration time i.e.

$$Q_{rr} = \int_{0}^{150\,\mu s} i_{rr}.dt$$

(iii)
$$K\ Factor = \frac{t_1}{t_2}$$

Curves

Figure 1 – Forward characteristics of Limit device

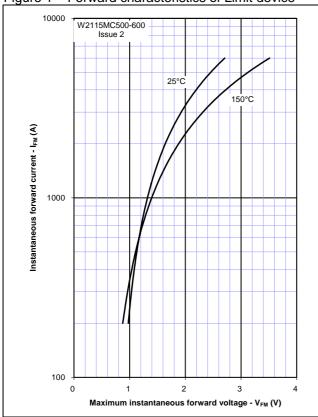


Figure 2 – Transient thermal impedance

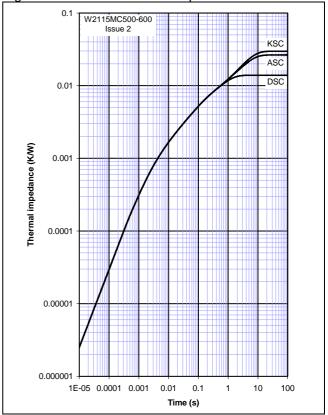
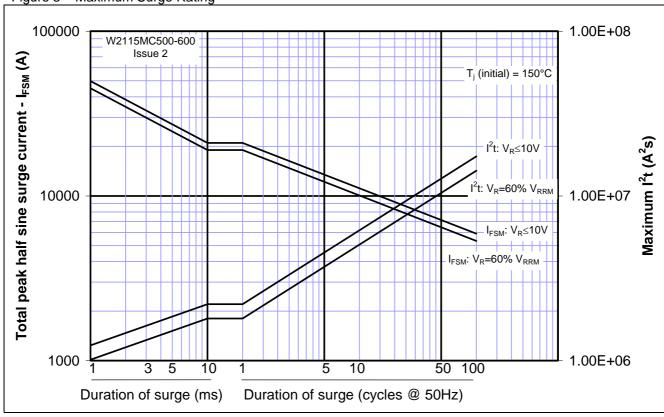
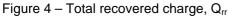




Figure 3 - Maximum Surge Rating

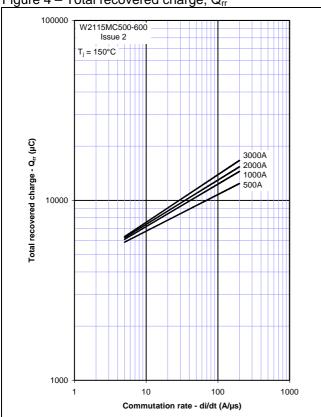
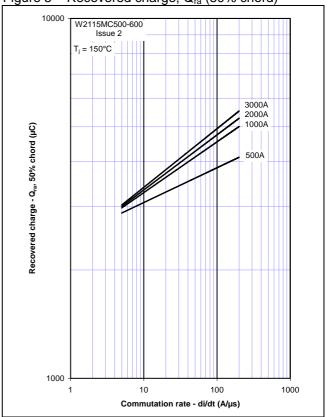



Figure 5 – Recovered charge, Q_{ra} (50% chord)

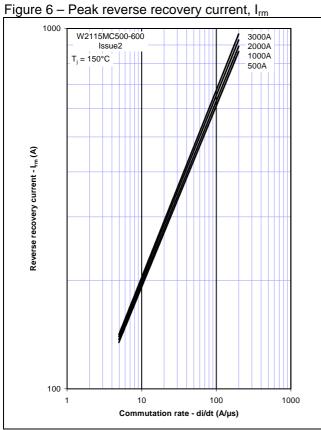


Figure 7 – Maximum recovery time, t_{rr} (50% chord)

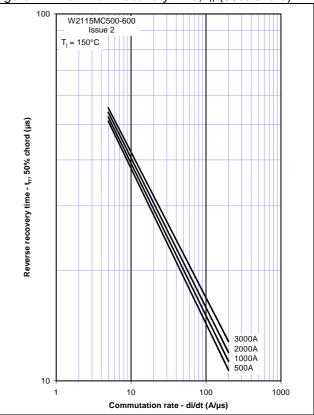


Figure 8 – Forward current vs. Power dissipation – Double Side Cooled

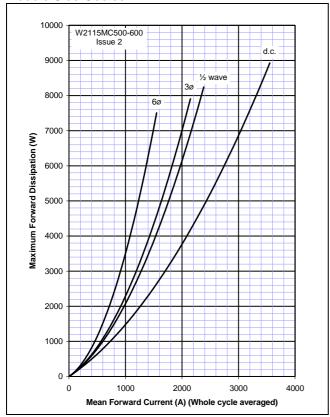


Figure 10 – Forward current vs. Power dissipation – Cathode Side Cooled

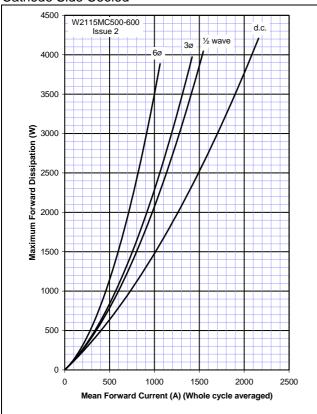
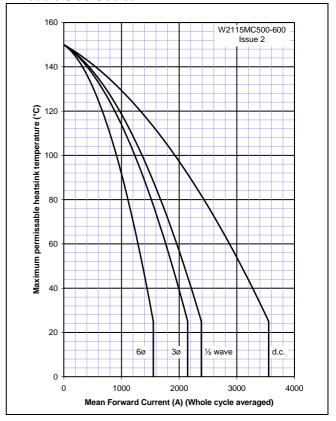
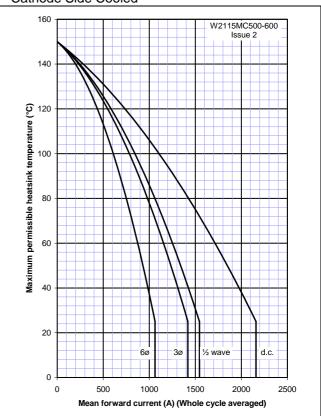
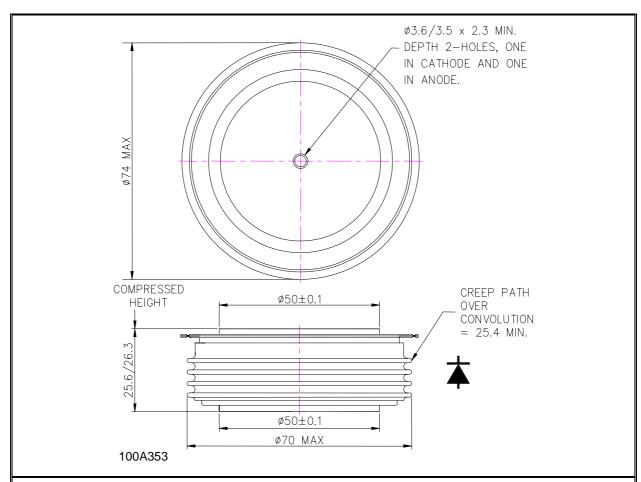


Figure 9 – Forward current vs. Heatsink temperature – Double Side Cooled


Figure 11 – Forward current vs. Heatsink temperature – Cathode Side Cooled

Outline Drawing & Ordering Information

ORDERI	NG INFORMATION	(Please quote 10 digit cod	e as below)
W2115	MC	**	0
Fixed Type Code	Fixed Outline Code	Voltage code V _{RRM} /100 50-60	Fixed code

Order code: W2115MC500 - 5000V V_{RRM}, 26.3mm clamp height capsule.

IXYS Semiconductor GmbH

Edisonstraße 15 D-68623 Lampertheim Tel: +49 6206 503-0 Fax: +49 6206 503-627 E-mail: marcom@ixys.de

www.ixysuk.com

www.ixys.net

IXYS UK Westcode Ltd

Langley Park Way, Langley Park, Chippenham, Wiltshire, SN15 1GE. Tel: +44 (0)1249 444524 Fax: +44 (0)1249 659448

E-mail: sales@ixysuk.com

IXYS Corporation

1590 Buckeye Drive Milpitas CA 95035 7418 USA Tel: +1 (408) 547 9000

Fax: +1 (408) 496 0670 E-mail: sales@ixys.net

IXYS Long Beach

IXYS Long Beach, Inc 2500 Mira Mar Ave, Long Beach CA 90815

Tel: +1 (562) 296 6584 Fax: +1 (562) 296 6585

E-mail: service@ixyslongbeach.com

The information contained herein is confidential and is protected by Copyright. The information may not be used or disclosed except with the written permission of and in the manner permitted by the proprietors IXYS UK Westcode Ltd.

© IXYS UK Westcode Ltd.

In the interest of product improvement, IXYS UK Westcode reserves the right to change specifications at any time without prior notice.

Devices with a suffix code (2-letter, 3-letter or letter/digit/letter combination) added to their generic code are not necessarily subject to the conditions and limits contained in this report.